114 research outputs found

    Exactly solvable Wadati potentials in the PT-symmetric Gross-Pitaevskii equation

    Full text link
    This note examines Gross-Pitaevskii equations with PT-symmetric potentials of the Wadati type: V=W2+iWxV=-W^2+iW_x. We formulate a recipe for the construction of Wadati potentials supporting exact localised solutions. The general procedure is exemplified by equations with attractive and repulsive cubic nonlinearity bearing a variety of bright and dark solitons.Comment: To appear in Proceedings of the 15 Conference on Pseudo-Hermitian Hamiltonians in Quantum Physics, May 18-23 2015, Palermo, Italy (Springer Proceedings in Physics, 2016

    Spontaneous PT-Symmetry Breaking for Systems of Noncommutative Euclidean Lie Algebraic Type

    Get PDF
    We propose a noncommutative version of the Euclidean Lie algebra E 2. Several types of non-Hermitian Hamiltonian systems expressed in terms of generic combinations of the generators of this algebra are investigated. Using the breakdown of the explicitly constructed Dyson maps as a criterium, we identify the domains in the parameter space in which the Hamiltonians have real energy spectra and determine the exceptional points signifying the crossover into the different types of spontaneously broken PT-symmetric regions with pairs of complex conjugate eigenvalues. We find exceptional points which remain invariant under the deformation as well as exceptional points becoming dependent on the deformation parameter of the algebra

    Geometric aspects of space-time reflection symmetry in quantum mechanics

    Get PDF
    For nearly two decades, much research has been carried out on properties of physical systems described by Hamiltonians that are not Hermitian in the conventional sense, but are symmetric under space-time reflection; that is, they exhibit PT symmetry. Such Hamiltonians can be used to model the behavior of closed quantum systems, but they can also be replicated in open systems for which gain and loss are carefully balanced, and this has been implemented in laboratory experiments for a wide range of systems. Motivated by these ongoing research activities, we investigate here a particular theoretical aspect of the subject by unraveling the geometric structures of Hilbert spaces endowed with the parity and time-reversal operations, and analyze the characteristics ofPT -symmetric Hamiltonians. A canonical relation between aPT -symmetric operator and a Hermitian operator is established in a geometric setting. The quadratic form corresponding to the parity operator, in particular, gives rise to a natural partition of the Hilbert space into two halves corresponding to states having positive and negative PT norm. Positive definiteness of the norm can be restored by introducing a conjugation operator C ; this leads to a positive-definite inner product in terms of CPT conjugation

    Strain-induced pseudomagnetic field and Landau levels in photonic structures

    Full text link
    Magnetic effects at optical frequencies are notoriously weak. This is evidenced by the fact that the magnetic permeability of nearly all materials is unity in the optical frequency range, and that magneto-optical devices (such as Faraday isolators) must be large in order to allow for a sufficiently strong effect. In graphene, however, it has been shown that inhomogeneous strains can induce 'pseudomagnetic fields' that behave very similarly to real fields. Here, we show experimentally and theoretically that, by properly structuring a dielectric lattice, it is possible to induce a pseudomagnetic field at optical frequencies in a photonic lattice, where the propagation dynamics is equivalent to the evolution of an electronic wavepacket in graphene. To our knowledge, this is the first realization of a pseudomagnetic field in optics. The induced field gives rise to multiple photonic Landau levels (singularities in the density of states) separated by band gaps. We show experimentally and numerically that the gaps between these Landau levels give rise to transverse confinement of the optical modes. The use of strain allows for the exploration of magnetic effects in a non-resonant way that would be otherwise inaccessible in optics. Employing inhomogeneous strain to induce pseudomagnetism suggests the possibility that aperiodic photonic crystal structures can achieve greater field-enhancement and slow-light effects than periodic structures via the high density-of-states at Landau levels. Generalizing these concepts to other systems beyond optics, for example with matter waves in optical potentials, offers new intriguing physics that is fundamentally different from that in purely periodic structures.Comment: 24 pages including supplementary information section, 4 figure

    Nonlinear Localization in Metamaterials

    Full text link
    Metamaterials, i.e., artificially structured ("synthetic") media comprising weakly coupled discrete elements, exhibit extraordinary properties and they hold a great promise for novel applications including super-resolution imaging, cloaking, hyperlensing, and optical transformation. Nonlinearity adds a new degree of freedom for metamaterial design that allows for tuneability and multistability, properties that may offer altogether new functionalities and electromagnetic characteristics. The combination of discreteness and nonlinearity may lead to intrinsic localization of the type of discrete breather in metallic, SQUID-based, and PT{\cal PT}-symmetric metamaterials. We review recent results demonstrating the generic appearance of breather excitations in these systems resulting from power-balance between intrinsic losses and input power, either by proper initialization or by purely dynamical procedures. Breather properties peculiar to each particular system are identified and discussed. Recent progress in the fabrication of low-loss, active and superconducting metamaterials, makes the experimental observation of breathers in principle possible with the proposed dynamical procedures.Comment: 19 pages, 14 figures, Invited (Review) Chapte

    Solitary waves in the Nonlinear Dirac Equation

    Get PDF
    In the present work, we consider the existence, stability, and dynamics of solitary waves in the nonlinear Dirac equation. We start by introducing the Soler model of self-interacting spinors, and discuss its localized waveforms in one, two, and three spatial dimensions and the equations they satisfy. We present the associated explicit solutions in one dimension and numerically obtain their analogues in higher dimensions. The stability is subsequently discussed from a theoretical perspective and then complemented with numerical computations. Finally, the dynamics of the solutions is explored and compared to its non-relativistic analogue, which is the nonlinear Schr{\"o}dinger equation. A few special topics are also explored, including the discrete variant of the nonlinear Dirac equation and its solitary wave properties, as well as the PT-symmetric variant of the model

    A versatile all-optical parity-time signal processing device using a Bragg grating induced using positive and negative Kerr-nonlinearity

    Get PDF
    The properties of gratings with Kerr nonlinearity and PT symmetry are investigated in this paper. The impact of the gain and loss saturation on the response of the grating is analysed for different input intensities and gain/loss parameters. Potential applications of these gratings as switches, logic gates and amplifiers are also shown

    Spatial Kramers-Kronig relations and the reflection of waves

    Get PDF
    Copyright © 2015, Rights Managed by Nature Publishing GroupAuthor version of article. The version of record is available from the publisher via DOI: 10.1038/nphoton.2015.106When a planar dielectric medium has a permittivity profile that is an analytic function in the upper or lower half of the complex position plane x=x'+ix'' then the real and imaginary parts of its permittivity are related by the spatial Kramers-Kronig relations. We find that such a medium will not reflect radiation incident from one side, whatever the angle of incidence. Using the spatial Kramers-Kronig relations, one can derive a real part of a permittivity profile from some given imaginary part (or vice versa) such that the reflection is guaranteed to be zero. This result is valid for both scalar and vector wave theories and may have relevance for designing materials that efficiently absorb radiation or for the creation of a new type of anti-reflection surface.Engineering and Physical Sciences Research Council (EPSRC

    All-optical routing and switching for three-dimensional photonic circuitry

    Get PDF
    The ability to efficiently transmit and rapidly process huge amounts of data has become almost indispensable to our daily lives. It turned out that all-optical networks provide a very promising platform to deal with this task. Within such networks opto-optical switches, where light is directed by light, are a crucial building block for an effective operation. In this article, we present an experimental analysis of the routing and switching behaviour of light in two-dimensional evanescently coupled waveguide arrays of Y- and T-junction geometries directly inscribed into fused silica using ultrashort laser pulses. These systems have the fundamental advantage of supporting three-dimensional network topologies, thereby breaking the limitations on complexity associated with planar structures while maintaining a high dirigibility of the light. Our results show how such arrays can be used to control the flow of optical signals within integrated photonic circuits

    Tractography dissection variability: What happens when 42 groups dissect 14 white matter bundles on the same dataset?

    Get PDF
    White matter bundle segmentation using diffusion MRI fiber tractography has become the method of choice to identify white matter fiber pathways in vivo in human brains. However, like other analyses of complex data, there is considerable variability in segmentation protocols and techniques. This can result in different reconstructions of the same intended white matter pathways, which directly affects tractography results, quantification, and interpretation. In this study, we aim to evaluate and quantify the variability that arises from different protocols for bundle segmentation. Through an open call to users of fiber tractography, including anatomists, clinicians, and algorithm developers, 42 independent teams were given processed sets of human whole-brain streamlines and asked to segment 14 white matter fascicles on six subjects. In total, we received 57 different bundle segmentation protocols, which enabled detailed volume-based and streamline-based analyses of agreement and disagreement among protocols for each fiber pathway. Results show that even when given the exact same sets of underlying streamlines, the variability across protocols for bundle segmentation is greater than all other sources of variability in the virtual dissection process, including variability within protocols and variability across subjects. In order to foster the use of tractography bundle dissection in routine clinical settings, and as a fundamental analytical tool, future endeavors must aim to resolve and reduce this heterogeneity. Although external validation is needed to verify the anatomical accuracy of bundle dissections, reducing heterogeneity is a step towards reproducible research and may be achieved through the use of standard nomenclature and definitions of white matter bundles and well-chosen constraints and decisions in the dissection process
    corecore